A detailed study on the working mechanism of a heteropoly acid modified TiO2 photoanode for efficient dye-sensitized solar cells.
نویسندگان
چکیده
A novel heteropolyacid (HPA) K6SiW11O39Ni(H2O)·xH2O (SiW11Ni) modified TiO2 has been successfully synthesized and introduced into the photoanode of dye-sensitized solar cells (DSSCs). The performance of the cell with the HPA-modified photoanode (SiW11Ni/TiO2), mixed with P25 powder in the ratio of 2 : 8, is better than the cell with a pristine P25 photoanode. An increase of 31% in the photocurrent and 22% improvement in the conversion efficiency are obtained. The effect of the heteropolyacid was well studied by UV-vis spectroscopy, spectro-electrochemical spectroscopy, dark current, intensity-modulated photocurrent spectroscopy and intensity-modulated photovoltage spectroscopy, open-circuit voltage decay and electrochemical impedance spectroscopy. The results show that the interfacial layer modified by SiW11Ni can enhance the injection and transport of electrons, and then retard the recombination of electrons, which results in a longer electron lifetime. What's more, the introduction of SiW11Ni can simultaneously broaden the absorption in the visible region, eventually leading to an efficient increase in energy conversion efficiency.
منابع مشابه
Fabrication of dye sensitized solar cells with a double layer photoanode
Dye sensitized solar cell was fabricated from a double layer photoanode. First, TiO2 nanoparticles were synthesized by hydrothermal method. These TiO2 NPs were deposited on FTO glasses by electrophoretic deposition method in applied voltage of 5 V and EPD time of 2.5-10 min. Then TiO2 hollow spheres (HSs) were synthesized by sacrificed template method with Carbon Spheres as template and TTIP ...
متن کاملInfluence of TiO2 layer thickness as photoanode in Dye Sensitized Solar Cells
Dye-sensitized solar cells (DSSCs) are categorized as some of inexpensive thin-film solar cells. The basis and foundation of these cells is a semiconductor that consists of an electrolyte and a light-sensitive anode. Titanium dioxide (TiO2) is a semiconductor that plays the role of anode and is the main constituent of these cells. In this paper, we have addressed the functionality and performan...
متن کاملSILAR Sensitization as an Effective Method for Making Efficient Quantum Dot Sensitized Solar Cells
CdSe quantum dots were in situ deposited on various structures of TiO2 photoanode by successive ionic layer adsorption and reaction (SILAR). Various sensitized TiO2 structures were integrated as a photoanode in order to make quantum dot sensitized solar cells. High power conversion efficiency was obtained; 2.89 % (Voc=524 mV, Jsc=9.78 mA/cm2, FF=0.56) for the cells that sensitized by SILAR meth...
متن کاملAcid azo dyes for efficient molecular photovoltaic: study of dye-sensitized solar cells performance
In this paper we sensitized three free-metal azo days Dye 1, Dye 2 and Dye 3 based on 1,8-naphthalimide with n-propyl as the electron donor group. We used sulfonic acid and hydroxyl substituents as the electron acceptor anchoring group in synthesized dyes. The proposed dyes were sensitized from acenaphthene as the starting material by standard reactions and characterized by different techniques...
متن کاملElectron Transfer in Dye-Sensitized Nanocrystalline TiO2 Solar Cell
The dye-sensitized solar cells (DSSC) have been regarded as one of the most promising new generation solar cells. Tremendous research efforts have been invested to improve the efficiency of solar energy conversion which is generally determined by the light harvesting efficiency, electron injection efficiency and undesirable electron lifetime. In this review, various characteristics of dye-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 10 شماره
صفحات -
تاریخ انتشار 2015